Министерство образования и науки Украины Харьковский национальный университет имени В. Н. Каразина

ФОРМИРОВАНИЕ И СЕЛЕКЦИЯ ПОПЕРЕЧНЫХ МОД В ЛАЗЕРНЫХ РЕЗОНАТОРАХ

Монография

Рецензенты:

- **П. Н. Мележик** член-корреспондент НАН Украины, доктор физико-математических наук, директор Института радиофизики и электроники имени А. Я. Усикова НАН Украины;
- **С. Л. Просвирнин** доктор физико-математических наук, профессор, заведующий отделом теоретической радиофизики Радиоастрономического института НАН Украины.

Утверждено к печати решением Ученого совета Харьковского национального университета имени В. Н. Каразина (протокол № 8 от 24.06.2016 г.)

Формирование и селекция поперечных мод в лазерных резонаторах : Φ 79 монография / А. В. Дегтярёв, В. А. Маслов, В. А. Свич, А. Н. Топков. – Х. : ХНУ имени В. Н. Каразина, 2017. - 212 с.

ISBN 978-966-285-374-2

В монографии обобщены результаты исследований по разработке и реализации методов формирования волновых пучков заданного профиля в открытых и волноводных резонаторах газовых лазеров инфракрасного и субмиллиметрового диапазонов. Описаны методы, позволяющие осуществлять угловую селекцию мод при перестройке лазерных резонаторов, содержащих открытые и волноводные участки.

Монография предназначена для широкого круга научных работников и инженеров, специализирующихся в области лазерной физики и техники. Книга будет полезна также преподавателям, аспирантам и студентам старших курсов радиофизических и физических специальностей, изучающим теорию и практические методы построения оптических систем и вопросы дифракции.

УДК 621.373.826 ББК 32.86-5

ISBN 978-966-285-374-2

- © Харьковский национальный университет имени В. Н. Каразина, 2017
- © Дегтярёв А. В., Маслов В. А., Свич В. А., Топков А. Н., 2017
- © Дончик И. Н., макет обложки, 2017

СОДЕРЖАНИЕ

Список сокращений	6
Предисловие	7
Введение	9
Раздел 1. Метод пространственной фурье-фильтрации для	
формирования мод с заданным профилем выходного	
излучения в лазерных резонаторах	16
1.1. Формирование фурье-моды в открытых двухзеркальных	
резонаторах	17
1.1.1. Интегральные уравнения открытых резонаторов	
в терминах фурье-оптики. Аналитическое обоснование	
существования фурье-моды для получения выходного пучка	
с однородным профилем излучения	17
1.1.2. Численное решение интегрального уравнения для	
двухзеркального резонатора с основным типом колебаний	
в виде фурье-моды	21
1.2. Интегральные уравнения обобщенных конфокальных	
резонаторов в терминах фурье-оптики	27
1.2.1. Резонаторы с плоскими зеркалами прямоугольной формы	28
1.2.2. Резонаторы со сферическими зеркалами круговой формы	32
1.3. Численное решение интегрального уравнения для лазерного	
резонатора	37
1.3.1. Уравнения электромагнитного поля и особенности активных	
сред газовых лазеров. Критерий устойчивости	
генерируемых мод	37
1.3.2. Численный алгоритм расчета интегрального уравнения для	
резонатора с активной средой	42
1.4. Селективное возбуждение гауссовых мод высших типов	
в обобщенном конфокальном резонаторе	48
Раздел 2. Формирование моды с квазиоднородным профилем выходного)
излучения в непрерывных CO ₂ -лазерах с неоднородными	
зеркалами	54
2.1. Формирование фурье-моды с квазиоднородным профилем	
выходного излучения в СО2-лазере с амплитудно-ступенчатым	
зеркалом	55
2.1.1. Расчетные характеристики фурье-моды пассивного	
резонатора	55

Раздел 4. Селекция поперечных мод в волноводных	
квазиоптических резонаторах	156
4.1. Методика расчета волноводных резонаторов	
с модовыми селекторами	158
4.1.1. Селекция низших поперечных типов колебаний	158
4.1.2. Структура поперечных мод высших порядков в дальней зоне	164
4.2. Результаты расчета характеристик селектируемых	
поперечных мод	165
4.2.1. Метод селекции с помощью ирисовой диафрагмы	165
4.2.1.1. Резонаторы с отверстиями связи в отражателях	168
4.2.2. Метод селекции участком свободного пространства	171
4.2.3. Селективное возбуждение отдельных высших поперечных	
типов колебаний	173
4.3. Сравнение экспериментальных и численных результатов	180
Заключение	194
Список литературы	196
Приноманиа	200