МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени В. Н. КАРАЗИНА

В. А. Шкловский, А. В. Добровольский

ПИННИНГ И ДИНАМИКА ВИХРЕЙ В СВЕРХПРОВОДНИКАХ

Учебное пособие

Рекомендовано Министерством образования и науки Украины

УДК 538.945(075.8) ББК 22.36я73 Ш-66

Рецензенты:

- **А. Л. Касаткин** доктор физико-математических наук, старший научный сотрудник, ведущий научный сотрудник отдела сверхпроводимости Института металлофизики имени Г. В. Курдюмова НАН Украины;
- **Г. П. Микитик** доктор физико-математических наук, старший научный сотрудник, ведущий научный сотрудник отдела теоретической физики Физико-технического института низких температур имени Б. И. Веркина НАН Украины;
- **В. В. Чабаненко** доктор физико-математических наук, профессор, заведующий отделом сверхпроводимости и туннельной спектроскопии Донецкого физико-технического института имени А. А. Галкина НАН Украины.

Рекомендовано Министерством образования и науки Украины как учебное пособие для студентов высших учебных заведений (письмо № 1/11-12061 от 29.07.2014 г.)

Шкловский В. А.

Ш-66

Пиннинг и динамика вихрей в сверхпроводниках : учебное пособие / В. А. Шкловский, А. В. Добровольский. – Х. : ХНУ имени В. Н. Каразина, 2015. – 120 с. ISBN 978-966-285-161-8

Излагаются как традиционные, так и новые аспекты физики пиннинга и динамики вихрей в сверхпроводниках второго рода. Обсуждаются анизотропия пиннинга и направленное движение вихрей в присутствии однонаправленных плоских дефектов. Детально рассматриваются сценарии коллективного (теория Ларкина—Овчинникова) и сильного (результаты Лабуша) пиннинга вихрей на хаотически расположенных точечных дефектах, а также интерпретация коллективного пиннинга в терминах картины сильного пиннинга. Обсуждается реакция сверхпроводника на высокочастотное электромагнитное поле.

УДК 538.945(075.8) ББК 22.36я73

ISBN 978-966-285-161-8

© Харьковский национальный университет имени В. Н. Каразина, 2015
© Шкловский В. А., Добровольский А. В., 2015
© Шкловский В. А., Добровольский А. В., макет обложки, 2015

Содержание

Списон	Список сокращений и терминов Эт авторов		
От авт			
Лекция	н 1. Вводная	10	
1.1.	Основные экспериментальные факты	10	
1.2.	Двужидкостная модель и длина когерентности	13	
1.3.	Уравнение Лондонов и глубина проникновения поля	15	
1.4.	Термодинамические соотношения в магнитном поле	17	
1.5.	Поверхностная энергия на границе раздела NS фаз	18	
1.6.	Сверхпроводники первого и второго рода	19	
Лекция	я 2. Вихрь и его свойства	22	
2.1.	Энергия и магнитный момент вихря	22	
2.2.	Магнитное поле вихря	24	
2.3.	Взаимодействие вихрей между собой	25	
2.4.	Взаимодействие вихря с поверхностью сверхпроводника	27	
2.5	Линаминасина сройства вихрай	20	

Лє	кция	з. Тензор электропроводности в магнитном поле	32		
	3.1.	Уравнение движения вихря с учетом эффекта Холла	32		
	3.2.	Продольное и холловское напряжения. Угол Холла	33		
	3.3.	Вычисление тензора электропроводности в модели Друде	35		
	3.4.	Вычисление α_H и η . Их анализ в «чистом» и «грязном» пределе	37		
Лє	кция	 Пиннинг вихрей в сверхпроводниках 	39		
	4.1.	Понятия пиннинга вихрей и критического тока	39		
	4.2.	Физическая природа пиннинга	40		
	4.3.	Влияние пиннинга на ВАХ сверхпроводника	41		
	4.4.	Вычисление ВАХ при нулевой температуре	41		
	4.5.	Влияние температуры на ВАХ. Крип вихрей	44		
Лє	Лекция 5. Эффект Холла и направленное движение вихрей				
	5.1.	Влияние плоских дефектов на резистивные свойства ВТСП $$	46		
	5.2.	Вычисление средней скорости вихря	47		
	5.3.	Вычисление ВАХ двумерной динамики вихрей	50		
	5.4.	Анализ резистивных откликов 2D динамики вихрей	53		
Лє	Лекция 6. Сильный пиннинг на хаотически расположенных дефектах 58				
	6.1.	Два сценария реализации пиннинга на случайных дефектах	58		
	6.2.	Зависимость средней силы пиннинга от координаты вихря \dots .	59		
	6.3.	Многозначные режимы и скачки координат и энергии вихря \dots	64		
	6.4.	Вычисление j_c с помощью теории фазовых переходов Ландау	66		
Лє	Лекция 7. Коллективный пиннинг				
	7.1.	Основная идея подхода и оценка j_c при нулевой температуре	71		
	7.2.	Крип одиночного вихря для $j \ll j_c$ и конечной температуры $\ \ \dots \ \ \ .$	74		

7.3.	Упругие модули вихревой решетки	77	
7.4.	Критический ток в 3D случае (теория Ларкина-Овчинникова)	78	
7.5.	Коллективный пиннинг вихрей для 2D случая	80	
7.6.	Заключительные замечания о сильном и коллективном пиннинге .	80	
Лекци	я 8. Равновесная анизотропия пиннинга вихрей на двойниках	84	
8.1.	Пиннинг вихрей на двойниках: эксперименты аргоннской группы	84	
8.2.	Критический угол при пиннинге вихрей на двойниках	86	
8.3.	Угловая зависимость $j_c(lpha)$ при пиннинге на двойниках $\ldots \ldots$	88	
8.4.	Крип вихрей при пиннинге вихрей на двойниках	91	
Лекци	я 9. Реакция сверхпроводника на переменное электромагнитное		
пол	e	94	
9.1.	Комплексная проводимость сверхпроводника	94	
9.2.	Нормальный скин-эффект в сверхпроводнике	97	
9.3.	Поверхностный импеданс металла	98	
9.4.	Поверхностный импеданс сверхпроводника	102	
Лекци	я 10.Динамика запиннингованных вихрей на переменном токе 1	l 07	
10.1	.Поглощение мощности на сверхвысоких частотах	108	
10.2	.Влияние постоянного тока на частоту депиннинга	110	
10.3	.Восстановление потенциала пиннинга	112	
Заклю	Заключение 1		
Алфав	итный указатель 1	115	
Реком	Рекомендованная литература 1		