Министерство образования и науки Украины Харьковский национальный университет имени В. Н. Каразина

А. И. КОРОБОВ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Учебное пособие

Рекомендовано Министерством образования и науки Украины как учебное пособие для студентов химических специальностей высших учебных заведений

2-е издание

УДК 66.01 + 54(075.8) ББК 35я73 К 68

Рецензенты:

Михальчук В. М. — заведующий кафедрой физической химии Донецкого национального университета, доктор химических наук, профессор; **Нечипорук В. В.** — профессор кафедры физической химии и экологии химических производств, доктор физико-математических наук, профессор; **Шишкин О. В.** — и.о. генерального директора НТК "Институт монокристаллов" НАН Украины, доктор химических наук.

Рекомендовано Министерством образования и науки Украины как учебное пособие для студентов химических специальностей высших учебных заведений (письмо № 1/11–8194 от 14.05.2013 г.)

Коробов А. И.

К 68

Теоретические основы химической технологии : учебное пособие к лекционному курсу «Экотехнология» / А. И. Коробов. — 2-е изд. — X. : XHУ имени В. Н. Каразина, X013. — X156 с.

ISBN 978-966-285-097-0

Пособие рассчитано на студентов химических факультетов классических университетов, изучающих нормативную дисциплину «Экотехнология». Предпочтение отдано материалу, который сложнее найти в существующей учебной литературе. Речь, прежде всего, идет о современных нанотехнологиях, биотехнологиях, генной инженерии; подходах к совершенствованию технологических процессов за счет селективного управления отдельными (нелинейными) стадиями механизма; представлениях о границе раздела фаз в гетерогенном катализе и сокращении разрыва в понимании модельных и реальных каталитических реакций; методах моделирования, позволяющих интегрировать в единое целое информацию, относящуюся к различным уровням иерархии сложного химикотехнологического процесса. Приведены примеры традиционных, современных наукоемких и зарождающихся технологий. Вводный раздел посвящен подробному обсуждению требований современного общества к фундаментальной химии и химической технологии. Пособие может представлять определенный интерес для учащихся и специалистов в области материаловедения, фармации, ресурсосбережения.

УДК 66.01 + 54(075.8) ББК 35я73

ISBN 978-966-623-994-8 (1-е изд.) ISBN 978-966-285-097-0

- © Харьковский национальный университет имени В. Н. Каразина, 2014
- © А. И. Коробов, 2014
- © О. В. Будник, макет обложки, 2014

СОДЕРЖАНИЕ_

Предисловие	
0. Общество, химическая технология,	
экология и фундаментальная химия	11
0.1. Устойчивое развитие общества	12
0.2. Окисление ископаемого топлива	16
0.3. Ожижение газообразного топлива	18
0.4. Проблема выбросов CO ₂	21
0.5. Альтернативные источники энергии	23
0.5.1. Биомасса	23
0.5.2. Солнечные батареи	25
0.5.3. Другие альтернативы	27
0.5.4. Водородная энергетика, топливные элементы	27
0.6. Оптические носители информации	29
0.7. Краткий итог	31
1. Термодинамические модели сложных химических	
и химико-технологических процессов	33
1.1. Нефть: крекинг, пиролиз	35
1.2. Диаграммы относительной устойчивости	36
1.3. Эмпирические соотношения для энергии Гиббса	39
1.4. Нефть: ректификация	42
1.5. Производство углеродных волокон	43
1.6. Производство кокса	45
1.7. Системы уравнений для констант равновесий	47

2. Кинетические модели сложных химических	
и химико-технологических процессов	51
2.1. Графы механизмов сложных реакций	55
2.2. Матричный формализм	58
2.3. Основные типы нелинейного поведения	60
2.3.1. Реакция Белоусова-Жаботинского	62
2.3.2. Особенности поведения систем вдали от равновесия	64
2.4. Процессы полимеризации и полимерные материалы	
в среде Белоусова–Жаботинского	66
2.5. Реакционно-диффузионный компьютер	67
2.6. Качественное изучение поведения нелинейных систем	70
2.6.1. Целенаправленный поиск химических осцилляторо	ов 74
2.6.2. Модельная реакция гетерогенного катализа:	
окисление СО на платине	75
2. TC	70
3. Катализ	79
3.1. Гетерогенный катализ	80
3.1.1. Представления о поверхности раздела фаз	0.1
в гетерогенном катализе	81
3.1.2. Адсорбция на поверхности	86
3.1.3. От моделей к реальному катализу	92
3.1.4. Закон действующих поверхностей	95
3.1.5. Производство аммиака	98
3.2. Ферментативный катализ	106
3.2.1. Биотехнология	112
3.2.2. Генная инженерия	114
3.2.3. Производство инсулина	120
3.3. Общие закономерности и понятия катализа	126
3.3.1. Вакер-процесс	127
3.3.2. Основные понятия катализа	128
3.3.3. Основные виды катализа и катализаторов	129
3.3.4. Катализаторы двойного действия	131
3.3.5. Получение бензина из метанола	132
3.3.6. Процесс Монсанто	133
3.3.7. Катализ и охрана окружающей среды	135
3.3.8. Технологические характеристики промышленных и	
лизаторов	136
3.3.9. Контактные аппараты	139

Содержание	 5
1	

4. Макрокинетика	143
4.1. Массоперенос	144
4.1.1. Диффузия	145
4.1.2. Конвективный перенос	146
4.1.3. Диффузионно-контролируемые реакции	147
4.2. Теплоперенос	148
4.2.1. Теплопроводность	149
4.2.2. Конвективный перенос	149
4.2.3. Лучистый перенос	150
4.3. Элементы линейной неравновесной термодинамики	151
4.4. Элементы гидродинамики	155
4.4.1. Закон подобия. Теория размерностей	156
4.5. Иерархическая структура	
химико-технологического процесса	160
4.5.1. Полимеризация изобутилена	161
4.6. Кибернетика в химической технологии	167
5. Нанохимия и нанотехнология	172
5.1. Наноэлектроника	176
5.2. Наномашины	180
5.3. Наноманипуляторы	181
5.4. Наноматериалы	184
5.5. Наномедицина	186
5.6. Наноустройства	188
5.7. Нанореакторы	190
5.8. Нанокатализ	191
Химия и «благополучие жития человеческого»	
(в качестве послесловия)	197
Литература	231
Приложения	
Программа лекционного курса	